
 Channabasaveshwara Institute of Technology
(Affiliated to VTU, Bel

 (NAAC Accredited &

 NH 206 (B.H. Road), Gubbi, Tumkur

Department of

MICROPROCESSOR AND MICROCONTROLLER LABORATORY

 [As per Choice Based Credit System (CBCS) scheme]

(Academic year 2017

B.E

Name :__________________________

USN :___________________________

Batch : ________________

Channabasaveshwara Institute of Technology
Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

ccredited & ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Computer Science & Engineering

MICROPROCESSOR AND MICROCONTROLLER LABORATORY

[As per Choice Based Credit System (CBCS) scheme]

cademic year 2017 -2018)

15CSL48

B.E - IV Semester

Lab Manual

________________ Section : ____________

QMP 7.1 D/F

Channabasaveshwara Institute of Technology

Computer Science & Engineering

MICROPROCESSOR AND MICROCONTROLLER LABORATORY

[As per Choice Based Credit System (CBCS) scheme]

 Channabasaveshwara Institute of Technology
(Affiliated to VTU, Bel

 (NAAC Accredited &

NH 206 (B.H. Road), Gubbi, Tumkur

Department of Computer Science & Engineering

MICROPROCESSOR AND MICROCONTROLLER

LABORATORY

Prepared by:

Mr.Chetan Balaji

Associate Professor

Channabasaveshwara Institute of Technology
Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

ccredited & ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

Department of Computer Science & Engineering

MICROPROCESSOR AND MICROCONTROLLER

LABORATORY (15CSL48)

Version 1.1

February 2018

 Reviewed and Approved by:

 Dr.Shantala C P

 Professor& Head

Dept. of CSE

Department of Computer Science & Engineering

MICROPROCESSOR AND MICROCONTROLLER

Approved by:

.Shantala C P

& Head,

 Channabasaveshwara Institute of Technology
(Affiliated to VTU, Bel

 (NAAC Accredited &

NH 206 (B.H. Road), Gubbi, Tumkur

Laboratory Code: 15CSL48

Number of Lecture Hours/Week 01I + 02P

Total Number of Lecture Hours 40

A. Laboratory Session-1: Write

diagram, Pin diagram and description. The same information is also taught in

theory class; this helps the students to

B. Laboratory Session-2: Write

same information is also taught in theory class; this helps the students to

understand better. Note: These TWO Laboratory sessions are used to fill the gap

between theory classes and practical sessions. Both sessions are evaluated as lab

experiments for 20 marks.

 NOTE:

1. Develop and execute the following programs using 8086 Assembly Language. Any

suitable assembler like MASM/TASM/8086 kit or any

used.

2. Program should have suitable comments.

3. The board layout and the circuit diagram of the interface are to be provided to

the student during the examination.

4. Software Required: Open source ARM Development platform, KEIL IDE a

Proteus for simulation

Channabasaveshwara Institute of Technology
Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi)

ccredited & ISO 9001:2015 Certified Institution)

NH 206 (B.H. Road), Gubbi, Tumkur – 572 216. Karnataka.

SYLLABUS

 IA Marks 20

Number of Lecture Hours/Week 01I + 02P Exam Marks 80

Total Number of Lecture Hours 40 Exam Hours 03

CREDITS – 02

1: Write-up on Microprocessors, 8086 Functional block

diagram, Pin diagram and description. The same information is also taught in

theory class; this helps the students to understand better.

2: Write-up on Instruction group, Timing diagrams, etc. The

same information is also taught in theory class; this helps the students to

understand better. Note: These TWO Laboratory sessions are used to fill the gap

etween theory classes and practical sessions. Both sessions are evaluated as lab

experiments for 20 marks.

Develop and execute the following programs using 8086 Assembly Language. Any

suitable assembler like MASM/TASM/8086 kit or any equivalent software may be

Program should have suitable comments.

The board layout and the circuit diagram of the interface are to be provided to

the student during the examination.

Software Required: Open source ARM Development platform, KEIL IDE a

QMP 7.1 D/F

IA Marks 20

Exam Marks 80

Exam Hours 03

up on Microprocessors, 8086 Functional block

diagram, Pin diagram and description. The same information is also taught in

up on Instruction group, Timing diagrams, etc. The

same information is also taught in theory class; this helps the students to

understand better. Note: These TWO Laboratory sessions are used to fill the gap

etween theory classes and practical sessions. Both sessions are evaluated as lab

Develop and execute the following programs using 8086 Assembly Language. Any

equivalent software may be

The board layout and the circuit diagram of the interface are to be provided to

Software Required: Open source ARM Development platform, KEIL IDE and

SOFT WARE PROGRAMS-PART A

1. Design and develop an assembly language program to search a key element “X” in a

list of ‘n’ 16-bit numbers. Adopt Binary search algorithm in your program for searching.

2. Design and develop an assembly program to sort a given set of ‘n’ 16-bit numbers in

ascending order. Adopt Bubble Sort algorithm to sort given elements.

3. Develop an assembly language program to reverse a given string and verify whether it

is a palindrome or not. Display the appropriate message.

4. Develop an assembly language program to compute nCr using recursive procedure.

Assume that ‘n’ and ‘r’ are non-negative integers.

 5. Design and develop an assembly language program to read the current time and

Date from the system and display it in the standard format on the screen.

6. To write and simulate ARM assembly language programs for data transfer, arithmetic

and logical operations (Demonstrate with the help of a suitable program).

7. To write and simulate C Programs for ARM microprocessor using KEIL (Demonstrate

with the help of a suitable program).

HARD WARE PROGRAMS-PART B

8. a. Design and develop an assembly program to demonstrate BCD Up-Down

Counter (00-99) on the Logic Controller Interface.

b. Design and develop an assembly program to read the status of two 8-bit inputs

(X & Y) from the Logic Controller Interface and display X*Y.

9. Design and develop an assembly program to display messages “FIRE” and “HELP”

alternately with flickering effects on a 7-segment display interface for a suitable period

of time. Ensure a flashing rate that makes it easy to read both the messages (Examiner

does not specify these delay values nor is it necessary for the student to compute these

values).

10. Design and develop an assembly program to drive a Stepper Motor interface and

rotate the motor in specified direction (clockwise or counter-clockwise) by N steps

(Direction and N are specified by the examiner). Introduce suitable delay between

successive steps. (Any arbitrary value for the delay may be assumed by the student).

11. Design and develop an assembly language program to

a. Generate the Sine Wave using DAC interface (The output of the DAC is to be

displayed on the CRO).

b. Generate a Half Rectified Sine waveform using the DAC interface. (The output

of the DAC is to be displayed on the CRO).

12. To interface LCD with ARM processor-- ARM7TDMI/LPC2148. Write and execute

programs in C language for displaying text messages and numbers on LCD.

13. To interface Stepper motor with ARM processor-- ARM7TDMI/LPC2148. Write a

program to rotate stepper motor.

Study Experiments:

1. Interfacing of temperature sensor with ARM freedom board (or any other ARM

microprocessor board) and display temperature on LCD.

2. To design ARM cortex based automatic number plate recognition system.

3. To design ARM based power saving system.

 INDEX SHEET

Note:

• If the student fails to attend the regular lab, the experiment has to

be completed in the same week. Then the manual/observation and

record will be evaluated for 50% of maximum marks.

Sl.
No

Name of the Experiment

Date

M
a
n
u
a
l
M
a
r
k
s

(
M
a
x
 .
 2
0
)

R
e
c
o
r
d

M
a
r
k
s

(
M
a
x
.
1
0
)

S
ig
n
a
tu
r
e

(
S
tu
d
e
n
t)

S
ig
n
a
tu
r
e

(
F
a
c
u
lt
y
)

Conduction Repetition
Submission of

Record

01 Laboratory Session-1:

02 Laboratory Session-2:
03 Search a 16 bit Number
04 Sorting the 16 bit numbers
05 Palindrome
06 NcR
07 Display System Time
08 ARM programming
09 C Programs for ARM microprocessor
10 BCD Up-Down Counter
11 7-segment display
12 Stepper Motor interface
13 DAC interface
14 Interface LCD with ARM

processor

15 Interface Stepper motor with

ARM processor

Average

Course Objectives

This course will enable students to

� To provide practical exposure to the students on microprocessors, design and

coding knowledge on 80x86 family/ARM.

� To give the knowledge and practical exposure on connectivity and execute of

interfacing devices with 8086/ARM kit like LED displays, Keyboards, DAC/ADC,

and various other devices

Course Outcomes

After studying this course, students will be able to

� Learn 80x86 instruction sets and gins the knowledge of how assembly language

works.

� Design and implement programs written in 80x86 assembly language.

� Know functioning of hardware devices and interfacing them to x 86 families.

� Choose processors for various kinds of applications.

Graduate Attributes
• Engineering Knowledge

• Problem Analysis

• Modern Tool Usage

• Conduct Investigations of Complex Problems

 • Design/Development of Solutions

General Instructions

� All laboratory experiments (all 7 + 6 nos) are to be included for practical

examination.
� Students are allowed to pick one experiment from each of the lot.
� PART –A: Procedure + Conduction + Viva: 10 + 25 +05 (40)
� PART –B: Procedure + Conduction + Viva: 10 + 25 +05 (40)
� Change of experiment is allowed only once and marks allotted to the procedure

part to be made zero.
� Students should maintain an observation book along with Manual and record.
� Observation book will be evaluated for 20 Marks and Manual for 10 Marks and

final IA for 10 Marks.
� Students should complete the observation book which should include the logic

and tracing of the respective program and should get it evaluated before

departing from the lab.
� They should produce the lab record Next week which should include lab set

programs with comments and necessary Board Lay out and Circuit diagram if any.
� If in case the student is unable to attend the regular batch, He / She should take

prior permission from the concerned faculty and try to attend the next batch.

CONTENTS

SL.NO CONTENT PAGE NO

1. MASM Commands 1-2

2. Laboratory Session-1 3-5

3. Laboratory Session-1 5-6

4. Sample 8086 Programs 7-10

5. Search a Key Element in a set of 16 bit Numbers 12-13

6. Sorting the 16 Bit Numbers in ascending Numbers 14-15

7. Check the given String for a Palindrome 16-17

8. Compute NcR using recursive Procedure 18-19

9. Display System Time 20-21

10. ARM ALP Programming for Data Transfer, Arithmetic operations 22-24

11. C Programs using ARM Processor 25

12. BCD Up-Down Counter and Multiplication 27-29

13. 7 Segment Display 30-32

14. Stepper Motor Interface 33-34

15. DAC Interface 35-38

16. LCD Interface with ARM 39-43

17. Stepper Motor Interface with ARM 41

18. Temperature Sensor Interface with ARM 42-52

19. Automatic Number Plate Recognition 53

20. ARM based Power Saving System 54

21. Additional Programs 55-65

22. References 66

23. Instruction Set 67-74

24. Interrupts 75-78

25. Interfacing Circuit Diagram 79-83

26. ARM LPC 2148 features 84-85

27. Working of Keil Compiler 86-92

28. Question Bank/Viva Questions 93-97

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 1 -

MASM COMMANDS:

C :/>cdfoldername

C:/foldername>edit filename.asm

 After this command executed in command prompt an editor window will
open. Program should be typed in this window and saved. The program structure is
given below.

Structure of Program:

.model tiny/small/medium/large

.Stack <some number>

.data
 ; Initialize data
 ; which is used in program.
.code
 ; Program logic goes here.
 ;
end

To run the program, the following steps have to be followed:

C:/foldername>masm filename.asm

 After this command is executed in command prompt if there are no errors in
program regarding to syntax the assembler will generates an object module as
discuss above.

C:/foldername>link filename.obj

 After verifying the program for correct syntax and the generated object files
should be linked together. For this the above link command should be executed and
it will give an EXE file if the model directive is small as discuss above.

C:/foldername>debug filename.exe

 After generating EXE file by the assembler it’s the time to check the output.
For this the above command is used and the execution of the program can be done
in different ways. It is as shown below:

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 2 -

__ g ; complete execution of program in single step.

__ t ; Stepwise execution.

__d ds: starting address or ending address ; To see data in memory
locations

__p ; Used to execute interrupt or procedure during stepwise execution of

program

__ q ; To quit the execution.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 3 -

Laboratory Session-1

Write-up on Microprocessors, 8086 Functional block diagram, Pin diagram
and description.

Description:

The microprocessors functions as the CPU in the stored program model of the
digital computer. Its job is to generate all system timing signals and synchronize the
transfer of data between memory, I/O, and itself. It accomplishes this task via the
three-bus system architecture previously discussed.

The microprocessor also has a S/W function. It must recognize, decode, and execute
program instructions fetched from the memory unit. This requires an Arithmetic-
Logic Unit (ALU) within the CPU to perform arithmetic and logical (AND, OR, NOT,
compare, etc) functions.

The 8086 CPU is organized as two separate processors, called the Bus Interface Unit
(BIU) and the Execution Unit (EU). The BIU provides H/W functions, including
generation of the memory and I/O addresses for the transfer of data between the
outside world -outside the CPU, that is- and the EU.

The EU receives program instruction codes and data from the BIU, executes these
instructions, and store the results in the general registers. By passing the data back
to the BIU, data can also be stored in a memory location or written to an output
device. Note that the EU has no connection to the system buses. It receives and
outputs all its data thru the BIU.

FETCH AND EXECUTE

Although the 8086/88 still functions as a stored program computer, organization of
the CPU into a separate BIU and EU allows the fetch and execute cycles to overlap.
To see this, consider what happens when the 8086 or 8088 is first started.

1. The BIU outputs the contents of the instruction pointer register (IP) onto the
address bus, causing the selected byte or word to be read into the BIU.

2. Register IP is incremented by 1 to prepare for the next instruction fetch.

3. Once inside the BIU, the instruction is passed to the queue. This is a first-in, first-
out storage register sometimes likened to a "pipeline".

4. Assuming that the queue is initially empty, the EU immediately draws this
instruction from the queue and begins execution.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 4 -

5. While the EU is executing this instruction, the BIU proceeds to fetch a new
instruction. Depending on the execution time of the first instruction, the BIU may fill
the queue with several new instructions before the EU is ready to draw its next
instruction.

The BIU is programmed to fetch a new instruction whenever the queue has room for
one (with the 8088) or two (with the 8086) additional bytes. The advantage of this
pipelined architecture is that the EU can execute instructions almost continually
instead of having to wait for the BIU to fetch a new instruction.

There are three conditions that will cause the EU to enter a "wait" mode. The first
occurs when an instruction requires access to a memory location not in the queue.
The BIU must suspend fetching instructions and output the address of this memory
location. After waiting for the memory access, the EU can resume executing
instruction codes from the queue (and the BIU can resume filling the queue).

The second condition occurs when the instruction to be executed is a "jump"
instruction. In this case control is to be transferred to a new (nonsequential)
address. The queue, however, assumes that instructions will always be executed in
sequence and thus will be holding the "wrong" instruction codes. The EU must wait
while the instruction at the jump address is fetched. Note that any bytes presently in
the queue must be discarded (they are overwritten).

One other condition can cause the BIU to suspend fetching instructions. This occurs
during execution of instructions that are slow to execute. For example, the
instruction AAM (ASCII Adjust for Multiplication) requires 83 clock cycles to
complete. At four cycles per instruction fetch, the queue will be completely filled
during the execution of this single instruction. The BIU will thus have to wait for the
EU to pull over one or two bytes from the queue before resuming the fetch cycle.

A subtle advantage to the pipelined architecture should be mentioned. Because the
next several instructions are usually in the queue, the BIU can access memory at a
somewhat "leisurely" pace. This means that slow-memory parts can be used without
affecting overall system performance.

Fig 1.0 shows the block diagram of 8086 microprocessor.

Fig 1.1 shows the Pin diagram of 8086 microprocessor.

15CSL48-MP-LAB

Dept. of CSE, CIT, Gubbi- 572 216

 Fig 1.0

Laboratory Session-2

Write-up on Instruction group, Timing diagrams of 8086.

Instruction Set of 8086 is shown in Fig 1.2.

lab.

572 216 Page No.

 Fig 1.1

up on Instruction group, Timing diagrams of 8086.

of 8086 is shown in Fig 1.2. The detailed explanation will be taught in the

 Fig 1.2

IV Sem. CSE

Page No. - 5 -

Fig 1.1

explanation will be taught in the

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 6 -

8086 can perform two operations viz. Read and Write.

8086 can operate in two modes viz. Minimum mode and Maximum mode.

Fig 1.3 shows the timing diagram of 8086 Read operation in Minimum mode.

Fig 1.4 shows the timing diagram of 8086 Read operation in Minimum mode.

Fig 1.3

Fig 1.4

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 7 -

SAMPLE PROGRAMS:

1. Write an ALP to move the data between the Registers.

.model tiny
.data
 num1 db 50h
num2 dw 1234h

.code
Mov ax,@data
Mov ds,ax ;DATA SEGMENT INITIALIZATION

mov al,num1
 mov ah,al
mov bh,ah
mov bl,al ;MOVES BYTE LENGTH OF DATA FROM REG.AL TO REG.BL

mov cx,num2
 mov dx,cx
mov si,ax
mov di,si ;MOVES WORD LENGHT OF DATA FROM REG.CX TO REG.DX

int 3 ;TERMINATES THE PROGRAM EXECUTION

end

2. Write and ALP to move immediate data to Registers.

.model tiny
.code

mov al,10h
mov ah,10
mov cl,50h
mov ch,50 ;MOVES IMMEDIATE VALUE TO 8 BIT REGISTER

mov bx,1234h
mov dx,1234 ;MOVES IMMEDIATE VALUE TO 16 BIT REGISTER

mov si,4000h
mov di,2000h

int 3 ;TERMINATE THE PROGRAM EXECUTION

end

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 8 -

3. Write an ALP to add two numbers and to store the result in the specified
destination.

.model small

.data
num1 db 05h
 num2 db 06h
 num3 dw 1234h
 num4 dw 0002h
sum db ?
 sum2 dw ?

.code
 mov ax,@data
mov ds,ax ;INITIALIZES DATA SEGMENT

 mov al,num1
 mov bl,num2
add al,bl ;ADD THE 2 BYTES
mov sum,al ;STORES THE RESULT IN MEMORY

mov cx,num3
add cx,num4 ;ADD THE 2 WORDS
mov sum2,cx ;STORES THE RESULT IN MEMORY

int 3 ;TERMINATE THE PROGRAM EXECUTION

align 16 ;DS STARTS FROM PAGE BOUNDARY
end

4. Write and ALP to multiply two 16-bit numbers and to store the result in the
specified location.

.model small

.data

num1 dw 1234h
num2 dw 0ffffh
res dw 5 dup(0)

.code

Mov ax,@data

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 9 -

Mov ds,ax ;INITIALIZATION OF DATA SEGMENT

mov ax,num1
mov dx,num2
mul dx ;MULTIPLIES 2 16-BIT NUMBERS

mov res,ax
mov res+2,dx ;STORES THE IN MEMORY

int 3 ;TERMINATE THE PROGRAM EXECUTION
align 16 ;DS STARTS FROM PAGE BOUNDARY

end

5. Write an ALP to divide a 32-bit unsigned number by a 16-bit unsigned
number and to store the quotient and remainder in the specified location.

.model small

.data
Dvd dd 12345678h
Dvr dw 0ffffh
Quot dw ?
Remd dw ?

.code

Mov ax,@data
Mov ds,ax ;INITIALIZATION OF DATA SEGMENT

Mov si,offset dvd
Mov ax,wordptr[si]
Mov dx,wordptr[si+2]

Mov cx, dvr
div cx

mov quot ,ax
mov remd, dx

int 3 ;TERMINATES THE PROGRAM EXECUTION
align 16 ;DS STARTS FROM PAGE BOUNDARY

end

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 10 -

6. Write an ALP to illustrate the operation of AAA instruction. Use Macros

.model small

.data
read macro ;Start of a macro
mov ah,01h ;read a single key stroke
int 21h
endm ;end of macro

.code

Mov ax,@data
Mov ds,ax ;INITIALIZATION OF DATA SEGMENT

read ;CALL MACRO READ
mov bl,al ;STORE THE READ KEY IN BL REGISTER

read
mov cl,al

add al,bl ;ADD AL WITH BL AND STORES THE RESULT IN AL.

mov dl,al
mov ah,0
aaa ;ADJUST THE AL VALUE TO UNPACKED BCD

mov si,ax

int 3 ;TERMINATES THE PROGRAM EXECUTION

end

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 11 -

SOFTWARE PROGRAMS: PART A

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 12 -

Program No.01. Date:
BINARY SEARCH

AIM:

Design and develop an assembly language program to search a key element “X” in a
list of ‘n’ 16-bit numbers. Adopt Binary search algorithm in your program for
searching.

.model small

.data ;start of the data segment

 arr dw 0111h,0112h,0113h,0114h,0115h ; ‘n’ elements to be searched

len dw ($-arr)/2

key equ 0116h ; key element to be searched

msg1 db "found$"

msg2 db "not found$"

.code ; start of the code segment

mov ax,@data ;initialization of data segment

mov ds,ax

mov bx,00 ; first data position to bx.

mov dx,len ; last data position to dd.

mov cx,key

again: cmp bx,dx

ja notfnd

mov ax,bx

add ax,dx

shr ax,1 ;Get the middle element of array

mov si,ax

add si, si

cmp cx,arr[si] ;compare the key with middle

jae big ; element of array

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 13 -

dec ax

mov dx,ax ;last element of new array to dx

jmp again

big: je found

inc ax

mov bx,ax

jmp again

found: lea dx,msg1 ;content of the string to be displayed.

Jmp displ

notfnd: lea dx,msg2 ;content of the string to be displayed.

displ : mov ah,09h

 int 21h

int 3 ; Terminates the execution

end ;end of program

Conclusion:
This program performs a search for a key element in an array. If the search

element is found it will display a message ‘found’. As the search element (key

element in program) is not present in the given array it will display a message ‘not

found’.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 14 -

Program No.02. Date:

SORTING A GIVEN SET OF 16-BIT UNSIGNED INTEGERS INTO ASCENDING ORDER

Design and develop an assembly program to sort a given set of ‘n’ 16-bit numbers in

ascending order. Adopt Bubble Sort algorithm to sort given elements.

.model small

.data

 ARR DW 3333h, 4444h, 1111h, 9999h, 5555h, 2222h, 7777h, 8888h, 6666h

 ; The numbers to be sorted

 LEN EQU $-ARR ; Length of the array

 .code

 MOV AX, @DATA

 MOV DS, AX

 MOV CX, (LEN/2)-1 ; Get the total number of Elements In the array

 OUTER: LEA SI, ARR ; Get the address of the first element of the array

 MOV BX, 0

 ; to have a count of number of Comparison

 MOV SI, 00

Inner : inc bx

 MOV AX, ARR [SI]

 INC SI

 INC SI ; Get the next value

 CMP AX, ARR [SI] ; Perform the comparison

 JBE SKIP ; Skip if 1st Value is less than 2nd.

 XCHG AX, ARR [SI] ; Else Exchange the two values.

 MOV ARR [SI-2], AX ; Swap the two values.

 SKIP: CMP BX, CX ; compare the total no of Comparison

 JL INNER ; Repeat if necessary.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 15 -

 LOOP OUTER ; Inner loop is for no of iterations

 INT 3H ; Outer loop is for no of comparison

END START

Conclusion:

 This program will sort the given numbers in ascending order. The sorted numbers

will be stored directly in the data Segment. To view the data segment the following code

must be used.

-d ds: 0

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 16 -

Program No.03. Date:

Check a string for a Palindrome

Develop an assembly language program to reverse a given string and verify whether
it is a palindrome or not. Display the appropriate message.

.model small

.data

 str1 db "alam" ; String to be checked for palindrome

 slen equ ($-str1)

 str2 db 40 dup(0)

 msg1 db "Palindrome$"

 msg2 db "Not Palindrome$"

.code

start: mov ax,@data

 mov ds,ax

 mov es,ax ; Initialize extra segment

 mov cx,slen ; Length of the string

 lea si, str1

 add si,slen – 1 ; get the last byte of the data

 lea di, str2

up: mov al,[si]

 mov [di],al ; load the byte from [Si] to [Di]

 dec si

 inc di

 loop up ; Repeat the process

 lea si, str1

 lea di, str2

 mov cx,slen

 cld ; Clear the direction flag

repe cmpsb ; compare the string bytes present in SI & DI

 jne down ; Jump if the strings are not equal

 lea dx, msg1

 jmp down1

down: lea dx, msg2

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 17 -

down1: mov ah, 09h

 int 21h

 int 3 ; Terminate the program

 end start

Conclusion:

 This program reverse the string provided in data segment by keeping

the original string as it is and compares both the strings. It will check each and every

character. If all the characters are same then the given string is said to be as

palindrome and it will display a message “palindrome” on screen otherwise the

given string is not palindrome and it will display a message “not palindrome” on

screen.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 18 -

Program No.04. Date:

NcR

Develop an assembly language program to compute nCr using recursive procedure.
Assume that ‘n’ and ‘r’ are non-negative integers.

.model small

.stack 20

.data

 n db 08h

 r db 05h

 ncr db ?

.code

start: mov ax,@data

 mov ds,ax

 mov ncr,00h

 mov al,n

 mov bl,r

 call encer

 int 3

encer proc

para1: cmp al,bl ; compare ‘n’,’r’ for equality

 je para8

para2: cmp bl,00h ; compare ‘r’ with 00

 je para8

para3: cmp bl,01h ; compare ‘r’ with 01h

 je para10

para4: dec al ; decrement ‘n’

 cmp bl,al

 je para9

para5: push ax ; Push ‘n’ to the stack

 push bx ; Push ‘r’ to the stack

 call encer

para6: pop bx ; Get ‘r’ and ‘n’ from the stack

 pop ax

 dec bl

 push ax

 push bx

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 19 -

 call encer

para7: pop bx

 pop ax

 ret

para8: inc ncr

 ret ; Store the results

para9: inc ncr

para10: add ncr,al

 ret

encer endp

 end start

Conclusion:

 This program performs nCr using recursive procedure. Output is stored in

data segment. To observe the output in data segment we have to search for our

given ‘n’ and ‘r’ values as program is written to store the result after the given data

in data segment.

The NcR Value for 8 and 5 is 56, But the outputwill be shown as 38 which is the

Hexa value of 56.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 20 -

Program No.05. Date:
 DISPLAY SYSTEM TIME

Design and develop an assembly language program to read the current time and

Date from the system and display it in the standard format on the screen.

.MODEL SMALL

.DATA

msg db "The Time is: "

 hrs db ?,?,' : '

 mins db ?,?,' (hh:mm) ',10,13

 db "The Date is: "

 da db ?,?, '/'

 mon db ?,?, '/'

 yea db ?,?, '(dd/mm/yy)', 10,13,'$'

.CODE

 MOV AX,@DATA

 MOV DS, AX

; Time Part

 mov ah,2ch ; DOS function to read system time

 int 21h

 mov al,ch ; load the hours to ‘al’

 aam ; ASCII adjust after multiplication

 add ax, 3030h

 mov hrs, ah

 mov hrs+1, al

 mov al,cl ; load the seconds to ‘al’

 aam

 add ax, 3030h

 mov mins, ah

 mov mins+1,al

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 21 -

; Day Part

MOV AH, 2AH ; To get System Date

INT 21H

MOV AL, DL ; Day is in DL

AAM

Add ax,3030h

mov da,Ah

mov da +1, al

MOV AL, DH ; Month is in DH

AAM

Add ax, 3030h

MOV mon,AH

mov mon+1,al

; YEAR

ADD CX, 0F830H; To negate the effects of 16bit value,

MOV Al, cl ; since AAM is applicable only for AL (YYYY -> YY)

aam

Add ax, 3030h

mov yea,ah

mov yea+1,al

 lea dx,msg ; Display the time

 mov ah,09h

 int 21h

int 3

end

Conclusion:

 This program displays the present system time. Our program displays only

the hours and minutes in the format HH: MM. By using the same DOS function we

can also display the seconds and milliseconds.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 22 -

Program No.06. Date:

Simple ARM Programs

To write and simulate ARM assembly language programs for data transfer,
arithmetic and logical operations (Demonstrate with the help of a suitable
program).

1. Data Transfer.

The below assembly level program moves the 32 bit data from register to register.

 area movt, code, readonly
 entry
 mov r1,#0005 ; Mov immediate 32 bit data to r1
 mov r2,#0002 ; Mov immediate 32 bit data to r1
 mov r3,r1 ; Register-Register movement
 mov r4,r2 ; Register-Register movement

stop b stop ; End of the program
 end

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 23 -

2. Arithmetic Operations

A. Addition, Subtraction and Multiplication:

area addt, code, readonly
 entry
 mov r1,#0005 ; Mov immediate 32 bit data to r1
 mov r2,#0002 ; Mov immediate 32 bit data to r2
 add r3,r2,r1 ; Add the contents present in r2 with the
 contents of r1 and store in r3
 sub r5,r1,r2 ; Subtract; r5 = r1-r2
 mul r6,r1,r2 ; Multiply
 mov r7,r6
 add r7,#2 ; Add immediate data
 mov r8,r7
 sub r8,#3 ; Subtract immediate data
 mov r9,r8

stop b stop
 end

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 24 -

3. Logical operations : To perform AND, Logical Shift operations,

area dis,code,readonly

 entry

 mov r0,#0x83

 mov r1,r0

 and r1, # 0Xf0 ; Perform Logical AND operation

 mov r2,r1

 lsr r2, #4 ; Perform Logical right Shift operation

 mov r3, r0

 and r3, # 0X0f

stop b stop

 end

4. Write the similar programs and try for OR, Logical Left Shift operations.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 25 -

Program No.07. Date:

 ‘C’ PROGRAMS FOR ARM PROCESSOR

To write and simulate C Programs for ARM microprocessor using KEIL

(Demonstrate with the help of a suitable program)

Program: To write a C program to Blink a LED /Port Pin with LPC 2148 ARM 7

Microcontroller.

#include <lpc214x.h> //Header File “x” can be wrt to controller

 unsigned int delay;

int main(void)

{

 IO1DIR = (4); // Bit No 4 (0100) will be activated

 while(1) // If True

 {

 IO1CLR = (04); // Clear Bit 04 of GPIO1

 for (delay=0 ;delay<5000; delay++); // Call Delay

 IO1SET = (04); // Set Bit 04 of GPIO1

 for (delay=0; delay<5000; delay++); // Call Delay

 }

 }

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 26 -

HARDWARE

PROGRAMS:

PART B

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 27 -

Program No.08. Date:

 COUNTERS AND MULTPLYER

a. Design and develop an assembly program to demonstrate BCD Up-Down Counter

(00-99) on the Logic Controller Interface.

.model small

.data

pa equ 0d800h

pb equ 0d801h

pc equ 0d802h

ctrlequ 0d803h

.code

mov ax, @data

mov ds, ax

mov al, 80h

mov dx, ctrl

out dx, al

mov cx, 0Ah ; Load 10 Counts

mov al, 00h

Next: mov dx, pa ; Configure Port A as output port and send the of counts

out dx, al

call delay

inc al ; Perform up counting.

loop Next

mov cx, 0Ah ; Load 10 Counts

mov al, 09h

rpt: mov dx, pa

out dx, al

call delay

dec al ; Perform up counting.

Loop rpt

int 3h

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 28 -

delay proc

push cx

push bx

mov cx, 0ffffh

 L1: mov bx, 8fffh

 L2: dec bx

jnz L2

loop L1

pop bx

pop cx

ret

delay endp

end

Conclusion:

 The program performs the up-down counter based on the input data

given on logic controller read through port B. If the input is zero then it performs

down counter starting from 99 down to 00 and if other than zero is the input then it

performs up counter starting from 00 down to 99. And the counting will continue

until a key ‘q’ is pressed in the key board, after displaying the count on logic

controller every time it checks whether a key ‘q’ is pressed or not.

While observing the output of down counter or up counter if the input changes then

from that point the counting will also changes. Suppose if the input is zero then it

perform down counting from 99 to 00 after some time when the output is 50 then if

we change the input other than zero then from that point it will start up counting

that is form 50, 51, 52. and so on.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 29 -

b. Design and develop an assembly program to read the status of two 8-bit inputs (X

& Y) from the Logic Controller Interface and display X*Y.

.model small

.data

pa equ 0d800h

pb equ 0d801h

pc equ 0d802h

ctrl equ 0d803h

.code

 movax,@data

 movds,ax

 mov al,82h ; Control word (PB as input port and PA as output port)

 mov dx, ctrl

 out dx, al

 mov dx, pb

 in al,dx ; Read the first 8 bit number

 mov bl,al ; Store the first number

top: mov ah,1 ; Read a character from the key board

 int 21h

 cmp al,13 ; Compare the character with the "ENTER" key, cmp al,0dh

 jnz top

 mov dx, pb ; Read the Second 8 bit number

 in al,dx ; Store the first number

 mul bl ; Multiplybl*al

 mov dx, pa

 out dx, al ; Display the result

 int 3

 end

Conclusion:

 The program performs the multiplication between two bytes and

gives the result. First byte is read from the port B of logic controller (user has to

provide) and waits for enter key to be pressed and once enter key is and it reads the

Second byte and multiplies and displays the result through Port A.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 30 -

Program No.09. Date:

7-SEGMENT DISPLAY INTERFACE

Design and develop an assembly program to display messages “FIRE” and “HELP”

alternately with flickering effects on a 7-segment display interface for a suitable

period of time. Ensure a flashing rate that makes it easy to read both the messages

(Examiner does not specify these delay values nor is it necessary for the student to

compute these values).

.model small

.stack 100

.data

 pa equ 0d800h ; Port address

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h ; Control word address

 str1 db 8eh, 0f9h, 88h, 86h ; Hexa values for “FIRE”

 str2 db 89h, 86h, 0c7h, 8ch ; Hexa values for “HELP”

.code

start: mov ax, @data

 mov ds, ax ; data segment Initialization

 mov al, 80h ; control word

 mov dx, ctrl

 out dx, al

again: mov bx, offset str1

 call display ; Jump to display procedure

 call delay ; Jump to delay procedure

 mov bx, offset str2

 call display

 call delay

 mov ah, 06h ; direct console input or output

 mov dl, 0ffh

 int 21h ;get character from keyboard buffer (if any)

 cmp al, 'q'

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 31 -

 jne again

 int 3 ; Terminate the program

display proc

 mov si, 03h ; To get the last byte

up1: mov cl, 08h

 mov ah, [bx+si] ; Load the data bit to ‘ah’

up: mov dx, pb

 rol ah, 1 ;Rotate each bit in the data by one

 mov al, ah

 out dx, al ; Out the first bit

 call clock

 dec cl

 jnz up ; repeat the steps ‘08’ times

 dec si

 cmp si, -1

 jne up1

 ret ; return back to main program

display endp

clock proc

 mov dx, pc

 mov al, 01h ; rising edge of clock pulse

 out dx, al

 mov al, 0 ; falling edge of the clock pulse

 out dx, al

 mov dx, pb

 ret

clock endp

delay proc

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 32 -

 pop cx

 ret

delay endp

 end start

Conclusion:

 This program displays “FIRE” and “HELP” on seven segment display interface

recursively one after the other with some delay till key ‘q’ is pressed on key board.

It’s not going to read any data from interface device. The data which has to be

displayed is provided in the program itself.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 33 -

Program No.10. Date:

STEPPER MOTOR INTERFACE

Design and develop an assembly program to drive a Stepper Motor interface and

rotate the motor in specified direction (clockwise or counter-clockwise) by N steps

(Direction and N are specified by the examiner). Introduce suitable delay between

successive steps. (Any arbitrary value for the delay may be assumed by the student).

.model small

.data

 pa equ 0d800h

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h

 nstep db 2 ; Initialize the number of steps

.code

start: mov ax, @data

 mov ds, ax

 mov al, 80h ; All ports are output ports

 mov dx, ctrl

 out dx, al

 mov bh, nstep

 mov al, 88h

again1: call step

 rol al, 1 ; for counter-clock wise direction

 ; Replace rol al,1 with ror al,1 for clock wise direction

 dec bh

 jnz again1

 int 3

step proc

 mov dx, pa

 out dx, al

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 34 -

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret

step endp

 end start

Conclusion:

 This program drives a stepper motor interface to rotate by 8 steps in

anti-clockwise direction. After each rotation a delay is introduced to observe the

rotation. After completing the rotations the execution will get stopped.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 35 -

Program No.11. Date:

DAC INTERFACE

Design and develop an assembly language program to

a. Generate the Sine Wave using DAC interface (The output of the DAC is to be

displayed on the CRO).

b. Generate a Half Rectified Sine waveform using the DAC interface. (The output of

the DAC is to be displayed on the CRO).

A. SINE WAVE

.model small

.data

 pa equ 0c400h

 pb equ 0c401h

 pc equ 0c402h

 ctrl equ 0c403h

 table db 128,132,137,141,146,150,154,159,163,167,171,176,180,184,188

 db 192,196,199,203,206,210,213,217,220,223,226,229,231,234,236

 db 239,241,243,245,247,248,250,251,252,253,254,255

 db 255,254,253,252,251,250,248,247,245,243,241,239,236,234,231

 db 229,226,223,220,217,213,210,206,203,199,196,192,188,184,180

 db 176,171,167,163,159,154,150,146,141,137,132,128

 db123,119,114,110,105,101,97,93,88,84,80,76,72,68,64,60,56,52,49

 db 45,42,39,36,33,30,27,24,22,19,17,15,11,9,7,6,5,4,3,2,1,0

 db 0,1,2,3,4,5,6,7,9,11,15,17,19,22,24,27,30,33,36,39,42,45,49,52,56

 db 60,64,68,72,76,80,84,88,93,97,101,105,110,114,119,123

.code

start: mov ax,@data

 mov ds,ax

 mov al,80h ; All the ports are out put ports

 mov dx,ctrl

 out dx,al

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 36 -

again: mov bx,05h

up: mov cx,164 ; Load 164 values

 mov si,00h

 mov dx,pa

again1: mov al,table[si] ; Load each value from Look-up-table to al

 out dx,al

 inc si

 loop again1

 dec bx

 cmp bx,00

 jne up

 mov ah,06h ; direct console input or output

 mov dl,0ffh ; Read the character from the keyboard

 int 21h

 jz again

 int 3

 end start

Conclusion:

This program generates a sine wave of having amplitude of 5V. Output will

be seen in CRO. It will be continues wave. It stops execution as soon as any key is

pressed from the key board.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 37 -

B. Half Rectified Sine Wave:

.model small

.data

 pa equ 0c400h

 pb equ 0c401h

 pc equ 0c402h

 ctrl equ 0c403h

 table db 128,132,137,141,146,150,154,159,163,167,171,176,180,184,188

 db 192,196,199,203,206,210,213,217,220,223,226,229,231,234,236

 db 239,241,243,245,247,248,250,251,252,253,254,255,254,253,252

 db 251,250,248,247,245,243,241,239,236,234,231,229,226,223,220

 db 217,213,210,206,203,199,196,192,188,184,180,176,171,167,163

 db 159,154,150,146,141,137,132,128 ; Look_up_table

.code

start: mov ax,@data

 mov ds,ax

 mov al,80h ; All the ports are output ports

 mov dx,ctrl

 out dx,al

again3: mov bx,05h

up: mov cx,83 ; Load 83 values

 mov si,00

again4: mov dx,pa

 mov al,table[si] ; Load each value from Look-up-table to al

 out dx,al

 inc si

 loop again4

 mov cx,83

 mov al,128

next: out dx,al

 loop next

 dec bx

 cmp bx,00h

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 38 -

 jnz up

 mov ah,06h ; direct console input or output

 mov dl,0ffh ; Read the character from the keyboard

 int 21h

 jz again3

 int 3 ; Terminate the program

end start

Conclusion: This program generates a half - rectified sine wave of 5V amplitude.

Output will be seen in CRO. It stops execution as soon as any key is pressed from the

key board.

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 39 -

Program No.11. Date:
INTERFACE LCD WITH ARM PROCESSOR

To interface LCD with ARM processor-- ARM7TDMI/LPC2148. Write and execute

programs in C language for displaying text messages and numbers on LCD

#include <LPC214x.h>

void cmd(unsigned char d);
void datal(unsigned char t);
void delay (int count);

int main()
{
int i;
unsigned char name[]={"AMMLUI"};

IO0DIR=0x30403C00;
delay(100);

cmd(0x02); //cursor home command
cmd(0x01); //clear display command
cmd(0x28); //4-bit mode entry command(0x38 for 8 bit mode)
cmd(0x06); //entry mode command
cmd(0x0C); //display on cursor off command
//cmd(0xC0); //LCD bottom line display command

for (i=0;i<11;i++)
{
datal(name[i]);
}
while(1);
}

void cmd(unsigned char d)
{
int a=0;
a = d | 0xFFFFFF0F;
IO0CLR |= 0x00003C00;
a=a<<6;
IO0CLR = 0x20400000;
IO0SET = 0x10000000;
IO0SET = (IO0SET | 0x00003c00) &a;
delay (1000);
IO0CLR = 0x10000000;

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 40 -

a=0x0;
d=d<<4;
a = d | 0xFFFFFF0F;
IO0CLR |= 0x00003C00;
a=a<<6;
IO0CLR = 0x20400000;
IO0SET = 0x10000000;
IO0SET = (IO0SET | 0x00003C00)&a;
delay(1000);
IO0CLR = 0x10000000;
}
void datal(unsigned char t)
{
int b=0;
b = t|0xFFFFFF0F;
IO0CLR |= 0x00003C00;
b=b<<6;
IO0SET = 0x10400000;
IO0SET = (IO0SET | 0x00003C00)&b;
delay(1000);
IO0CLR = 0x10000000;

b=0x0;
t=t<<4;
b=t|0xFFFFFF0F;
IO0CLR |= 0x00003C00;
b=b<<6;
IO0SET = 0x10400000;
IO0SET = (IO0SET | 0x00003C00) &b;
delay(1000);
IO0CLR = 0x10000000;
}
Void delay (int count)
{
int j=0, i=0;
for (j=0;j<count;j++)
for (i=0;i<35;i++);
}

Date: Signature of the staff

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 41 -

Program No.12. Date:

INTERFACE STEPPER MOTOR WITH ARM PROCESSOR

To interface Stepper motor with ARM processor-- ARM7TDMI/LPC2148. Write a

program to rotate stepper motor

#include <LPC214X.h>

void delay();

void delay()
{
 int i,j;
 For (i=0; i<0xff; i++)
 For (j=0; j<0x25; j++);
}

int main()
{

 IO0DIR=0x000F0000; ; Consider ARM port Pin from 16-19
 ; And set these pins
 While (1)
 {
 //while (IO0PIN & 0x00008000);
 //while (! (IO0PIN & 0x00008000));

IO0PIN=0x00010000;
delay ();
IO0PIN=0x00020000;
delay ();
IO0PIN=0x00040000;
delay ();
IO0PIN=0x00080000;
delay();

 }
}
Date: Signature of the staff

; This is for Clock wise rotation

; For Anti- Clock wise Change

the direction as 8,4,2,1

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 42 -

STUDY EXPERIMENTS

1. Interfacing of temperature sensor with ARM freedom board (or any other ARM

Microprocessor board) and display temperature on LCD.

#include<lpc214x.h>

#include<stdio.h>

#define vol 3.35 //Reference voltage

#define fullscale 0x3ff //10 bit adc

//Function prototypes

void lcd_init(void);

void wr_cn(void);

void clr_disp(void);

void delay(unsigned int);

void lcd_com(void);

void wr_dn(void);

void lcd_data(void);

unsigned char temp1, pwr_on_flag=0xFF; //unsigned char

unsigned long int temp,r=0,i=0,j=0,temp_arry[10];;

char disp[] = "WELCOME TO ALS",disp1[] = "BANGALORE";

char disp2[] = "TEMP_SENSOR",disp3[] = "INTERFACING", disp4[] = "TEMP C=";

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 43 -

unsigned int temp_adc=0, adc_value=0;

unsigned long sum=0;

float ana_output , adc_out , temp_out ,avg_out = 0.0 ;

char var[15],*ptr;

int main()

{

 PINSEL0 = 0X00000000; // configure as GPIO

 PINSEL1 = 0X00040000; //AD0.4 pin is selected (P0.25)

 IO0DIR = 0x000000FC; //configure o/p lines for lcd

 lcd_init(); //lcd initialization

 delay(3200); // delay about 1ms

 clr_disp(); //clear display

 delay(3200); // delay about 1ms

 temp1 = 0x81; //Display starting address of first line 2nd pos

 lcd_com(); //function to send command to LCD display

 ptr = disp; // pointing data

while(*ptr!='\0')

 {

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 44 -

 temp1 = *ptr;

 lcd_data(); // function to write data on LCD

ptr ++;

 }

temp1 = 0xC4; // Display starting address of second line 5th pos

 lcd_com();

 ptr = disp1; // pointing data

 while(*ptr!='\0')

 {

 temp1 = *ptr;

 lcd_data(); // function to write data on LCD

 ptr ++;

 }

 for(i = 0 ; i < 300 ; i++) // delay of around a sec.

 for(j = 0 ; j < 10000 ; j++);

 clr_disp(); //clear display

 delay(3200); //delay about 1ms

 temp1 = 0x82; //Display starting address of first line 3rd pos

 lcd_com();

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 45 -

ptr = disp2;

 while(*ptr!='\0')

 {

 temp1 = *ptr;

 lcd_data(); // function to write data on LCD

 ptr ++;

 }

 temp1 = 0xC2; // Display starting address of second line 1st pos

 lcd_com();

 ptr = disp3; // pointing data

 while(*ptr!='\0')

 {

 temp1 = *ptr;

 lcd_data(); // function to write data on LCD

 ptr ++;

 }

 for(i = 0 ; i < 300 ; i++) // delay of around sec.

 for(j = 0 ; j < 10000 ; j++);

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 46 -

 clr_disp(); //clear display

 delay(3200); //1ms delay

 temp1 = 0x81; //Display starting address of first line 2nd pos

 lcd_com();

 ptr = disp4;

 while(*ptr!='\0')

 {

 temp1 = *ptr;

 lcd_data(); // function to write data on LCD

 ptr ++;

 }

 for(i = 0 ; i < 10 ; i++) // delay of 1ms.

 for(j = 0 ; j < 3000 ; j++);

 while(1)

 {

 AD0CR = 0x01200010; //CONTROL register for ADC

 while(((temp_adc = AD0GDR) &0x80000000) == 0x00000000);

//to check the DONE bit

adc_value = AD0GDR; //reading the ADC value

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 47 -

 adc_value >>=6; // shift data from zero location

 adc_value &= 0x000003ff; //mask 12 bit data only

 if (pwr_on_flag==0xFF)

 {

 pwr_on_flag=0x00;

 for(i=0;i<10;i++)

 temp_arry[i]=adc_value;

 //at 1st time add same value for 10 times

 }

 else

 {

 for(i=9;i>0;i--)

 temp_arry[i]=temp_arry[i-1];
// add read data to 1st position of temp_arry

 }

 temp_arry[i]= adc_value;

sum=0;

 for(i=0;i<10;i++)

 sum=sum+temp_arry[i]; //summing the read values

 sum=sum/10; //taking average of 10 value

 ana_output = ((float)sum * (float)vol)/(float)fullscale;

 //calculating analog voltage

 adc_out = ana_output;

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 48 -

 adc_out = (adc_out*11.2);

//in circuit we use the resistor voltage divider circuit , so we need to

calculate actual voltage

 adc_out = (adc_out/10.0);

// these steps find the real analog voltage corresponding to temperature.

 adc_out = (adc_out-2.7315);

 temp_out = (adc_out*100);

//value corresponding to temperature

sprintf(var,"%4.2f",temp_out);

 // converting int data into ascci value

 temp1 = 0x89; //Display starting addressof first line 10th pos

 lcd_com();

 delay(3200);

 ptr = var;

 while(*ptr!='\0')

{

 temp1 = *ptr; //write ambient temperature on lcd

 lcd_data();

ptr ++;

 }

 for (i = 0 ; i < 300 ; i++) // delay of around sec.

 for(j = 0 ; j < 10000 ; j++);

 }

} //end of main ()

// lcd initialisation routine.

void lcd_init(void)

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 49 -

{

 temp = 0x30; //command to test LCD voltage levels

 wr_cn();

 delay(3200);

 temp = 0x30; //command to test LCD voltage levels

 wr_cn();

 delay(3200);

 temp = 0x30; //command to test LCD voltage levels

 wr_cn();

 delay(3200);

 temp = 0x20; // change to 4 bit mode from default 8 bit mode

 wr_cn();

 delay(3200);

 temp1 = 0x28; // load command for lcd function setting with lcd in 4 bit mode,

 lcd_com(); // 2 line and 5x7 matrix display

 delay(3200);

 temp1 = 0x0C; // load a command for display on, cursor on and blinking off

 lcd_com();

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 50 -

 delay(800);

 temp1 = 0x06; // command for cursor increment after data dump

 lcd_com();

 delay(800);

 temp1 = 0x80; // set the cursor to beginning of line 1

 lcd_com();

 delay(800);

}

void lcd_com(void)

{

 temp = temp1 & 0xf0;

 wr_cn();

 temp = temp1 & 0x0f;

 temp = temp << 4;

 wr_cn();

 delay(500);

}

// command nibble o/p routine

void wr_cn(void) //write command reg

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 51 -

{

 IO0CLR = 0x000000FC; // clear the port lines.

 IO0SET = temp; // Assign the value to the PORT lines

 IO0CLR = 0x00000004; // clear bit RS = 0

 IO0SET = 0x00000008; // E=1

 delay(10);

 IO0CLR = 0x00000008;

}

// data nibble o/p routine

void wr_dn(void) ////write data reg

{

 IO0CLR = 0x000000FC; // clear the port lines.

 IO0SET = temp; // Assign the value to the PORT lines

 IO0SET = 0x00000004; // set bit RS = 1

 IO0SET = 0x00000008; // E=1

 delay(10);

 IO0CLR = 0x00000008;

}

// data o/p routine which also outputs high nibble first and lower nibble next

void lcd_data(void)

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 52 -

{

 temp = temp1 & 0xf0;

 temp = temp ;//<< 6;

 wr_dn();

 temp= temp1 & 0x0f;

 temp= temp << 4;

 wr_dn();

 delay(100);

}

void clr_disp(void)

{

 temp1 = 0x01;

 lcd_com();

 delay(500);

}

void delay(unsigned int r1)

{

 for(r=0;r<r1;r++);

}

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 53 -

2. To design ARM cortex based automatic number plate recognition system

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 54 -

3. To design ARM based power saving system

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 55 -

ADDITIONAL EXERIMENTS:

1. Read the status of eight input bits from the Logic Controller Interface and display

FF if it is even parity bits otherwise display 00. Also display number of 1’s in the

input data.

model small

.data

 pa equ 0d800h ; Port address

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h ; control Register address

.code

start: mov ax, @data

 mov ds, ax ; Initialization of data segment

 mov dx, ctrl

 mov al, 82h ; move the control word to ‘al’ register

 out dx, al ; move the control word to control register

 mov dx, pb ; Get the input data form ‘pb’

 in al, dx ; Get the input data to AL register

 mov bl, 00h

 mov cx, 08 ; number of rotations

up: rcl al,1

 jnc down ; after each rotation check for the carry flag

 inc bl ; If there is a carry, increment the ‘BL’ register

down: loop up ; Repeat rotation for ‘08’ times

 test bl,01h ; perform ‘AND’ operation to check for even or odd

parity

 jnz oddp ; If the result of the ‘AND’ is not zero, it is odd

parity

 mov al,0ffh ; If even parity display 0ffh

 jmp next

oddp: mov al,00h ; If odd parity display 00h

next: mov dx,pa

 out dx,al ; put the result to the ports

 call delay

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 56 -

 mov al, bl

 mov dx, pa

 out dx, al ; Out the number of 01s present in the I/P bits

 int 3

delay proc ; Delay procedure

 push cx

 push bx

 mov cx, 0ffffh

d2: mov bx, 8fffh

d1: dec bx

 jnz d1

 loop d2

 pop bx

 pop cx

 ret

delay endp

end start

Conclusion:

The program reads port B of 82C55A which is an input port. If input

contains an odd number of 1’s (that is the number of LED’s at logic 1) then the output

will be 00 at port A, which is an output port, indicating input is odd parity and after

some delay the number of 1’s present in input will be displayed through port A on the

output.

Similarly If input contains an even number of 1’s (that is the number of LED’s at logic 1)

then the output will be FF at port A, which is an output port, indicating input is even

parity and after some delay the number of 1’s present in input will be displayed through

port A on the output.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 57 -

2. Write two ALP modules stored in two different files; one module is to read a

character from the keyboard and the other one is to display a character. Use

the above two modules to read a string of characters from the keyboard

terminated by the carriage return and print the string on the display in the next

line.

.model small

.data

 String db 30 dup (?)

.code

include c:\masm\read.mac

include c:\masm\write.mac

start: mov ax, @data

 mov ds, ax ; Initialization of data segment

 mov si, 00h

again: read ; CALL MACRO READ

 cmp al, 0dh ; compare the data in ‘AL’ reg with enter Key

 je down

 mov string[si], al ; Move the data in ‘AL’ reg to destination.

 inc si

 jmp again

down: mov cx, si

 mov si, 00h

 write 0dh ; ‘13’,’10’ , To go to next line

 write 0ah

back: write string[si] ; Call write macro to write the data

 inc si

 loop back ; Repeat the writing

 int 3 ; Termination of the program

 end start

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 58 -

read.mac

read macro

 mov ah, 01h ; Dos command to read a data from keyboard

 int 21h

 endm

write.mac

write macro x

 mov dl, x

 mov ah, 02h ; Dos command to write a data to the O/P screen

 int 21h

 endm

Conclusion:

 This program reads the character entered through the Key board and stores in

the consecutive specified memory locations. This process repeats till the ENTER Key

(carriage return) is pressed. Once the ENTER key (carriage return) is pressed the

character stored in the consecutive memory locations will be displayed on the next line.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 59 -

3. Scan a 8x3 keypad for key closure and to store the code of the key pressed in a

memory location and display on screen. Also display row and column numbers of

the key pressed.

.model small

.stack 100

.data

 pa equ 0d800h

 pb equ 0d801h

 pc equ 0d802h

 ctrl equ 0d803h

 ASCIICODE db "0123456789.+-*/%ack=MRmn" ; look up table

 str db 13,10,"press any key on the matrix keyboard$"

 str1 db 13,10,"Press y to repeat and any key to exit $"

 msg db 13, 10,"the code of the key pressed is :"

 key db ?

 msg1 db 13,10,"the row is "

 row db ?

 msg2 db 13,10,"the column is "

 col db ?,13,10,’$’

.code

disp macro x ; Display a string

 mov dx, offset x

 mov ah, 09

 int 21h

 endm ; End of a macro

start: mov ax,@data

 mov ds,ax

 mov al,90h ; Port ‘A’ is input port

 mov dx,ctrl

 out dx,al

again1: disp str

 mov si,0h

again: call scan

 mov al,bh ; Row number

 add al,31h

 mov row,al

 mov al,ah ; Column number

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 60 -

 add al,31h

 mov col,al

 cmp si,00

 je again

 mov cl,03

 rol bh,cl

 mov cl,bh

 mov al,ah

 lea bx,ASCIICODE ; Address of the look up table

 add bl,cl

 xlat ; Translate a byte in AL

 mov key,al

 disp msg

 disp str1

 mov ah, 01 ; Read a string

 int 21h

 cmp al,'y'

 je again1

 int 3

scan proc

 mov cx,03

 mov bh,0

 mov al,80h

nxtrow: rol al,1

 mov bl,al

 mov dx,pc

 out dx,al

 mov dx,pa

 in al,dx

 cmp al,0

 jne keyid

 mov al,bl

 inc bh

 loop nxtrow

 ret

keyid: mov si,1

 mov cx,8

 mov ah,0

agn: ror al,1

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 61 -

 jc skip ; check for the carry

 inc ah

 loop agn

skip: ret ; Return to main program

scan endp

 end start

Conclusion:

 This program reads the data from the 8*3 key interface board. It will display its

value on the screen. It will also display the row number and column number of the key

pressed.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 62 -

4. Program to create a file (input file) and to delete an existing file.

.model small

.data

 string db "Enter the file name for the file to be created",13,10,'$'

 msg1 db 13,10,"The file cannot be created",13,10,'$'

 msg2 db 13,10,"File created successfully",13,10,'$'

 str1 db 40 dup(0)

 string1 db "Enter the file name to be deleted",13,10,'$'

 msg3 db 13,10,"The file cannot be deleted",13,10,'$'

 msg4 db 13,10,"File deleted successfully",13,10,'$'

 str2 db 40 dup(0)

.code

disp macro x ; Display macro

 lea dx, x

 mov ah, 09h

 int 21h

 endm

start: mov ax,@data

 mov ds,ax

 disp string ; Display String

 mov bx,00h

up: mov ah,01h ; Read the character from the

keyboard

 int 21h

 cmp al,0dh

 je exit

 mov str1[bx],al

 inc bx

 jmp up

exit: mov str1[bx],'$'

 mov ah,3ch ; Create or truncate file

 mov cx,00h ; File Attributes

 mov dx,offset str1

 int 21h

 jc down

 disp msg2

 jmp down1

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 63 -

down: disp msg1

down1: disp string1

 mov bx,00h

up1: mov ah,01h

 int 21h

 cmp al,0dh

 je exit1

 mov str2[bx],al

 inc bx

 jmp up1

exit1: mov str2[bx],'$'

 mov ah,41h ; delete file .

 mov dx,offset str2

 int 21h

 jc down2 ; CF set on error, AX = error code.

 disp msg4 ; if successful, CF will be clear,

 ; and the value of AX is cleared

 jmp down3

down2: disp msg3

down3: int 3

end start

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 64 -

5. To interface relay with ARM processor-- ARM7TDMI/LPC2148. Write a program

for the on and off of a relay.

#include <LPC214x.H> /* LPC214x definitions */

#define RELAY1 (1 << 4) // P0.4

#define KEY_CTRL_PIN IO1PIN

#define R1ON (1 << 16) //KEY1 P1.16

#define R1OFF (1 << 20) //KEY5 P1.20

 ////////////////////// MAIN /////////////////////////////////////

int main (void)

{

 IO1DIR = ~ (R1ON | R1OFF);

 IO0DIR = (RELAY1);

 while (1)

 {

 if (!(KEY_CTRL_PIN & R1ON)) //R1ON key pressed

 {

 IO0SET = 0X00000010 ;

 }

 if (!(KEY_CTRL_PIN & R1OFF)) //R1OFF key pressed

 {

 IO0CLR = 0X00000010 ;

 }

 }

}

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 65 -

6. To interface DAC with ARM processor-- ARM7TDMI/LPC2148. Write a program to

convert digital value to an analog value using DAC.

#include <LPC214x.H> /* LPC214x definitions */

////////// Init DAC /////////////////

Init_DAC()

{

 // Convert Port pin 0.25 to function as DAC

 PINSEL1 = 0X00080000;

 DACR = 0;

}

////////// Write DAC /////////////////

Write_DAC(unsigned int dacval)

{

 DACR = dacval << 6;

}

void delay(unsigned int count)

{

 int j=0,i=0;

 for(j=0;j<count;j++)

 {

 for(i=0;i<120;i++);

 }

}

////////// MAIN /////////////////

int main (void)

{

 Init_DAC();

 while(1)

 {

 Write_DAC(00);

 delay(100); // change this value to change Frequency

 Write_DAC(1023); // change this value to change Amplitude

 delay(100); // change this value to change Frequency

 }

}

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 66 -

References:

1. The Intel Microprocessors: Eighth Edition: Bary B. Brey.

2. Microprocessors and Interfacing: Second Edition: D V Hall.

3. Advanced Microprocessors and Peripherals: A K Ray.

4. Muhammad Ali Mazidi, Janice Gillispie, Mazidi, Danny Causey, The x86

PC Assembly Language Design and Interfacing, 5th Edition, Pearson,
2013.

5. ARM system developers guide, Andrew N Sloss, Dominic Symes and

Chris Wright, Elsevier,Morgan Kaufman publishers, 2008.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 67 -

ANNEXURES:

Instruction Set:

Instructions Operands Description

MOV

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

SREG, memory

memory, SREG

REG, SREG

SREG, REG

Copy operand2 to operand1.

The MOV instruction cannot:

• Set the value of the CS and IP registers.

• Copy value of one segment register to another segment

register (should copy to general register first).

• Copy immediate value to segment register (should copy to

general register first).

Algorithm: operand1 = operand2

Ex:

Mov AX,BX ;Copy contents of BX to AX

Mov si,00h ;load Si with 00h

MUL

REG

Memory

Unsigned multiply.

Multiply the contents of REG/Memory with contents of AL register.

Algorithm:

When operand is a byte:

AX = AL * operand.

When operand is a word:

(DX: AX) = AX * operand.

CMP

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Compare.

Algorithm:operand1 - operand2

Result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF,

CF) according to result.

JMP

Label

Unconditional Jump.

Transfers control to another part of the program. 4-byte address may

be entered in this form: 1234h: 5678h, first value is a segment

second value is an offset.

Algorithm: always jump

JA

Label

Jump If Above.

Short Jump if first operand is Above second operand (as set by CMP

instruction). Unsigned.

Algorithm:if (CF = 0) and (ZF = 0) then jump

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 68 -

JAE

Label

Jump If Above Or Equal

Short Jump if first operand is Above or Equal to second operand (as

set by CMP instruction). Unsigned.

Algorithm:

if CF = 0 then jump

JB

Label

Jump If Below.

Short Jump if first operand is Below second operand (as set by CMP

instruction). Unsigned.

Algorithm:

if CF = 1 then jump

JBE

Label

Jump If Below Or Equal

Short Jump if first operand is Below second operand (as set by CMP

instruction). Unsigned.

Algorithm:

if CF = 1 then jump

JC

Label

Jump If Carry

Short Jump if Carry flag is set to 1.

Algorithm:

if CF = 1 then jump

JE

Label

Jump If Equal.

Short Jump if first operand is Equal to second operand (as set by

CMP instruction). Signed/Unsigned.

Algorithm:

if ZF = 1 then jump

JG

Label

Jump If Greater

Short Jump if first operand is Greater then second operand (as set by

CMP instruction). Signed.

Algorithm:

if (ZF = 0) and (SF = OF) then jump

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 69 -

JGE

Label

Jump If Greater Or Equal.

Short Jump if first operand is Greater or Equal to second operand (as

set by CMP instruction). Signed.

Algorithm:

if SF = OF then jump

JL

Label

Jump If Less than.

Short Jump if first operand is Less then second operand (as set by

CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

JLE

Label

Jump If Less Or Equal.

Short Jump if first operand is Less or Equal to second operand (as

set by CMP instruction). Signed.

Algorithm:

if SF <> OF or ZF = 1 then jump

JNZ

Label

Jump If Non Zero.

Short Jump if Not Zero (not equal). Set by CMP, SUB, ADD, TEST,

AND, OR, XOR instructions.

Algorithm:

if ZF = 0 then jump

JZ

Label

Jump If Zero.

Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND,

OR, XOR instructions.

Algorithm:

if ZF = 1 then jump

LEA

REG, memory

Load Effective Address.

Algorithm:

• REG = address of memory (offset)

LOOP

Label

Decrease CX, jump to label if CX not zero.

Algorithm:

• CX = CX - 1

• if CX <> 0 then

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 70 -

o jump

else

o no jump, continue

ADD

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Add.

Algorithm:

operand1 = operand1 + operand2

AND

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Logical AND between all bits of two operands. Result is stored in

operand1.

These rules apply:

1 AND 1 = 1; 1 AND 0 = 0

0 AND 1 = 0; 0 AND 0 = 0

OR

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Logical OR between all bits of two operands. Result is stored in first

operand.

These rules apply:

1 OR 1 = 1; 1 OR 0 = 1

0 OR 1 = 1; 0 OR 0 = 0

SUB

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Subtract.

Algorithm:

operand1 = operand1 - operand2

DAA

No Operands

Decimal adjust After Addition.
Corrects the result of addition of two packed BCD values.

Algorithm:
if low nibble of AL> 9 or AF = 1 then:

• AL = AL + 6

• AF = 1

if AL> 9Fh or CF = 1 then:

• AL = AL + 60h

• CF = 1

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 71 -

DAS

No Operands

Decimal adjust After Subtraction.

Corrects the result of subtraction of two packed BCD values.

Algorithm:
if low nibble of AL> 9 or AF = 1 then:

• AL = AL - 6

• AF = 1

if AL> 9Fh or CF = 1 then:

• AL = AL - 60h

• CF = 1

INC

REG

memory

Increment.

Algorithm:operand = operand + 1

DEC

REG

Memory

Decrement.

Algorithm:operand = operand – 1

DIV

REG

Memory

Unsigned divide.

Algorithm:

when operand is a byte:

AL = AX / operand

AH = remainder (modulus)

when operand is a word:

AX = (DX AX) / operand

DX = remainder (modulus)

SHL

memory, immediate

REG, immediate

memory, CL

REG, CL

Shift Left.

Shift operand1 Left. The number of shifts is set by operand2.

Algorithm:

• Shift all bits left, the bit that goes off is set to CF.

• Zero bit is inserted to the right-most position.

SHR

memory, immediate

REG, immediate

memory, CL

REG, CL

Shift Right.

Shift operand1 Right. The number of shifts is set by operand2.

Algorithm:

• Shift all bits right, the bit that goes off is set to CF.

• Zero bit is inserted to the left-most position.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 72 -

ROL

memory, immediate

REG, immediate

memory, CL

REG, CL

Rotate Left.

Rotate operand1 left. The number of rotates is set by operand2.

Algorithm:

Shift all bits left, the bit that goes off is set to CF and the

same bit is inserted to the right-most position.

ROR

memory, immediate

REG, immediate

memory, CL

REG, CL

Rotate Right.

Rotate operand1 right. The number of rotates is set by operand2.

Algorithm:

Shift all bits right, the bit that goes off is set to CF and the

same bit is inserted to the left-most position.

RCL

memory, immediate

REG, immediate

memory, CL

REG, CL

Rotate operand1 left through Carry Flag. The number of rotates is

set by operand2.

Algorithm:

Shift all bits left, the bit that goes off is set to CF and

previous value of CF is inserted to the right-most position.

Example:

STC ; set carry (CF=1).

MOV AL, 1Ch ; AL = 00011100b

RCL AL, 1 ; AL = 00111001b, CF=0.

RET

C O

r r

OF=0 if first operand keeps original sign.

CALL

procedure name

label

Transfers control to procedure, return address is (IP)pushed to stack.

RET

No operands

Or even immediate

date

Return from near procedure.

Algorithm:

• Pop from stack:

o IP

if immediate operand is present: SP = SP + operand

IN

AL, im.byte

AL, DX

AX, im.byte

AX, DX

Input from port into AL or AX.

Second operand is a port number. If required to access port number

over 255 - DX register should be used.

OUT

AL, im.byte

AL, DX

AX, DX

Output from AL or AX to port.

First operand is a port number. If required to access port number

over 255 - DX register should be used.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 73 -

POP

REG

SREG

memory

Get 16 bit value from the stack.

Algorithm: Operand = SS : [SP](top of stack)

 SP = Sp + 2.

PUSH

REG

SREG

memory

Store 16 bit value in the stack.

Algorithm:

• SP = SP - 2

• SS:[SP] (top of the stack) = operand

XOR

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

Logical XOR (Exclusive OR) between all bits of two operands.

Result is stored in first operand.

These rules apply:

1 XOR 1 = 0; 1 XOR 0 = 1

0 XOR 1 = 1; 0 XOR 0 = 0

XCHG

REG, memory

memory, REG

REG, REG

Exchange values of two operands.

Algorithm:operand1 < - > operand2

XLAT

No Operands

Translate byte from table.

Copy value of memory byte at DS:[BX + unsigned AL] to AL

register.

Algorithm: AL = DS:[BX + unsigned AL]

AAA

No Operands

ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with

BCD values.

Algorithm:

if low nibble of AL> 9 or AF = 1 then:

• AL = AL + 6

• AH = AH + 1

• AF = 1

• CF = 1

else

• AF = 0

• CF = 0

in both cases:

clear the high nibble of AL.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 74 -

Example:

MOV AX, 15 ; AH = 00, AL = 0Fh

AAA ; AH = 01, AL = 05

AAS

No Operands

ASCII Adjust after Subtraction.

Corrects result in AH and AL after subtraction when working with

BCD values.

Algorithm:

if low nibble of AL> 9 or AF = 1 then:

• AL = AL - 6

• AH = AH - 1

• AF = 1

• CF = 1

else

• AF = 0

• CF = 0

in both cases:

clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH = 02, AL = 0FFh

AAS ; AH = 01, AL = 09

AAM

No Operands

ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.

Algorithm:

• AH = AL / 10

• AL = remainder

Example:

MOV AL, 15 ; AL = 0Fh

AAM ; AH = 01, AL = 05

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 75 -

INTERRUPTS:

Interrupt INT 21h:

INT 21h calls DOS functions.

Function 01h- Read character from standard input, result is stored in AL. If there
is no character in the keyboard buffer, the function waits until any key is pressed.

Invoked by: AH = 01h
Returns: AL = character entered.

Example:
 Mov AH, 01h
 INT 21h

Function 02h- Write a character to standard output.
INT 21h
Invoked by: DL = character to write.
 AH =02h
After execution AL = DL.

Example:
 Mov AH, 02h
 Mov DL, ’a’ ; Character to be displayed on screen must be stored in DL reg.
 INT 21h

Function 02h- set cursor position.

INT 10h / AH = 2 - set cursor position.
Input:
DH = row.
DL = column.
BH = page number (0...7).

Function 03h- gets cursor position and size.

INT 10h / AH = 03h -
input:
BH = page number.
return:
DH = row.
DL = column.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 76 -

CH = cursor start line.
CL = cursor bottom line.

Function 06h – Direct console for input/output.If DL = 0FFH on entry, then this
function reads the console. If DL = ASCII character, then this function displays the
ASCII character on the console video screen.

Invoked by: Parameters for O/P: DL = 0…255
 Parameters for I/P: DL = 255.

Returns: for O/P: AL = DL.
 For I/P: ZF set if no character available &AL = 0
 ZF clear if character available &AL = character.
Example:
 mov ah, 6
 mov dl, 'a'
 int 21h ; output character.

 mov ah, 6
 mov dl, 255
 int 21h ; get character from keyboard buffer (if any) or set ZF=1.
Function 09h - Write a string to standard output atDS: DX.
String must be terminated by '$'.The string can be of any length and may contain
control characters such as carriage return (0DH) and line feed (0AH).

Invoked by: DS = string to write.
 AH = 09h

Example:
 Mov AH, 09h
 Mov DX, offset str ; Address of the string to be displayed
 INT 21h

Function 2Ch- Get system time.

Invoked by: AH =2Ch
Return: CH = hour. CL = minute. DH = second. DL = 1/100 seconds.

Example:
 Mov AH, 2ch
 INT 21h

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 77 -

Function 3Ch - Create or truncate file.

Invoked by: CX = file attributes:
mov cx, 0 ; normal - no attributes.
mov cx, 1 ; read-only.
mov cx, 2 ; hidden.
mov cx, 4 ; system
mov cx, 7 ; hidden, system and read-only!
mov cx, 16 ; archive
mov cx, 0BH ; Volume label
mov cx, 10H ; Subdirectory

DS: DX -> filename. ; AH =3Ch

Returns:

CF clear if successful, AX = file handle.
CF set on error AX = error code.

Example:
 Mov AH, 3ch
 Mov CX, 01
 Mov DX, offset Filename
 INT 21h

Function 41h - Delete file (unlink).

Invoked by: DS: DX -> ASCIZ filename (no wildcards, but see notes).

AH=41h
Return:

CF clear if successful, AX destroyed.
CF set on error AX = error code.

Example:
 Mov AH, 41h
 Mov DX, offset Filename
 INT 21h

Function 4Ch – Terminate a process.

Invoked by: AH = 4ch
Return: returns control to the operating system.

Example:
 Mov AH, 4Ch

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 78 -

 INT 21h

Interrupt INT 10h:

INT 10h calls the BIOS functions. This interrupt often called the video
services interrupt as it directly controls the video display in a system.

Function 02h - Set cursor position.

Invoked by: DH = row; DL = column; BH = page number (0...7); AH=02h.

Example:
 MOV AH, 02h
 MOV BH, 00
 MOV DH, 06
 MOV DL, 10
 INT 10h

Function 03h – Get cursor position.
Invoked by: BH = page number. (In general 0)
 AH = 03h

Return: DH = row number; DL = column number; CH = cursor start line;
 CL = cursor bottom line.

Example:
 Mov BH, 0
 Mov AH, 03h
 INT 10h

Function 06h – Scroll up window
Invoked by: AL = number of lines by which to scroll. (00h = clear the entire screen.)

 BH = attribute used to write blank lines at bottom of window.
CH, CL = row, column of window's upper left corner.
DH, DL = row, column of window's lower right corner.

15CSL48-MP-LAB

Dept. of CSE, CIT, Gubbi- 572 216

Circuit diagrams of interfacing devices

1. Seven Segment Display

 The hardware uses four shift register ICs 74164. 74164 is an 8

parallel out shift register with asynchronous reset and two input pins. It requires 8 clock

cycles at “CLK” pin to shift the serial data from input to 8 p

the first serial bit will be in output QH, and only now the data at output is valid. To

cascade more 74164 shift register IC need to connect the last output QH to the input of

second shift register.

The output is connected to the cathode of the LEDs in the 7 segment display and thus

common anode displays are used. The anode is connected to +V

the first sift register is connected to input of the 2nd shift register and the last output o f

2nd shift register to input of 3

and they are connected to displays, in such a way that output 0A is connected to display

segment ‘a’ and 0B to ‘b’ and so on up to 0H; through 330 ohm resistors.

The shifting of data bit takes place for each clock cycle. 7404 IC used provides isolation

and the interface board gets 5V through port bit.

Pin 1 is used as data pin and pin 2 is used as other input to Vcc. The clock signal is

generated at a port bit which will b

PB0 is used for data bit; and PC0 for clock through which a falling edge has to be sent.

572 216 Page No.

Circuit diagrams of interfacing devices

The hardware uses four shift register ICs 74164. 74164 is an 8

parallel out shift register with asynchronous reset and two input pins. It requires 8 clock

cycles at “CLK” pin to shift the serial data from input to 8 parallel outputs. After 8 shifts,

the first serial bit will be in output QH, and only now the data at output is valid. To

cascade more 74164 shift register IC need to connect the last output QH to the input of

to the cathode of the LEDs in the 7 segment display and thus

common anode displays are used. The anode is connected to +Vcc. The last output of

the first sift register is connected to input of the 2nd shift register and the last output o f

gister to input of 3rd and so on. Thus the shift register are serial in parallel out

and they are connected to displays, in such a way that output 0A is connected to display

segment ‘a’ and 0B to ‘b’ and so on up to 0H; through 330 ohm resistors.

ting of data bit takes place for each clock cycle. 7404 IC used provides isolation

and the interface board gets 5V through port bit.

Pin 1 is used as data pin and pin 2 is used as other input to Vcc. The clock signal is

generated at a port bit which will be connected to the clock of the shift register.

PB0 is used for data bit; and PC0 for clock through which a falling edge has to be sent.

IV Sem. CSE

Page No. - 79 -

The hardware uses four shift register ICs 74164. 74164 is an 8-bit serial in-

parallel out shift register with asynchronous reset and two input pins. It requires 8 clock

arallel outputs. After 8 shifts,

the first serial bit will be in output QH, and only now the data at output is valid. To

cascade more 74164 shift register IC need to connect the last output QH to the input of

to the cathode of the LEDs in the 7 segment display and thus

The last output of

the first sift register is connected to input of the 2nd shift register and the last output o f

and so on. Thus the shift register are serial in parallel out

and they are connected to displays, in such a way that output 0A is connected to display

ting of data bit takes place for each clock cycle. 7404 IC used provides isolation

Pin 1 is used as data pin and pin 2 is used as other input to Vcc. The clock signal is

e connected to the clock of the shift register.

PB0 is used for data bit; and PC0 for clock through which a falling edge has to be sent.

15CSL48-MP-LAB

Dept. of CSE, CIT, Gubbi- 572 216

The microprocessor stores the display information in a RAM. Each time a display has to

be updated the microprocessor

corresponding display codes serially that is bit by bit to display. Hexadecimal code is

stores in the RAM. The code conversion from hexa to 7 segment is done just before the

display is updated.

The 7 segment display is used as a numerical indicator on many types of test equipment.

It is an assembly of light emitting diodeswhich can be powered individually.

two important types of 7-segment LED display.

In a common cathode display, the cathodes of

individual segments are illuminated by HIGH voltages.

In a common anode display, the anodes of all the LEDs are joined together and the

individual segments are illuminated by connecting to a LOW voltage.

Display code

Since the outputs of shift registers are connected to cathode sides of displays, low input

must be given to segments for making them glow and high inputs for making them

blank. Each display has 8 segments (a, b, c, d, e, f, g, h) as shown. For displayi

character the corresponding segment must be given low inputs.

The

one shown above is a

common anode display since all anodes are joined together and go to the positive

supply. The cathodes are connected individually to zero volts. Resistors must

in series with each diode to limit the current through each diode to a safe value. The

represents a decimal point.

The following table shows how to form characters: '0' means that pin is connected to

ground. '1' means that pin is connected to

 d.p g

0 1 1

1 1 1

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

7 1 1

8 1 0

9 1 0

572 216 Page No.

The microprocessor stores the display information in a RAM. Each time a display has to

be updated the microprocessor fetches all bytes one by one from RAM and outputs

corresponding display codes serially that is bit by bit to display. Hexadecimal code is

stores in the RAM. The code conversion from hexa to 7 segment is done just before the

nt display is used as a numerical indicator on many types of test equipment.

It is an assembly of light emitting diodeswhich can be powered individually.

segment LED display.

display, the cathodes of all the LEDs are joined together and the

individual segments are illuminated by HIGH voltages.

display, the anodes of all the LEDs are joined together and the

individual segments are illuminated by connecting to a LOW voltage.

Since the outputs of shift registers are connected to cathode sides of displays, low input

must be given to segments for making them glow and high inputs for making them

blank. Each display has 8 segments (a, b, c, d, e, f, g, h) as shown. For displayi

character the corresponding segment must be given low inputs.

one shown above is a

common anode display since all anodes are joined together and go to the positive

supply. The cathodes are connected individually to zero volts. Resistors must

in series with each diode to limit the current through each diode to a safe value. The

The following table shows how to form characters: '0' means that pin is connected to

ground. '1' means that pin is connected to Vcc.

f e d c b a Hex. value

0 0 0 0 0 0 C0

1 1 1 0 0 1 F9

1 0 0 1 0 0 A4

1 1 0 0 0 0 B0

0 1 1 0 0 1 99

0 1 0 0 1 0 92

0 0 0 0 1 0 82

1 1 1 0 0 0 F8

0 0 0 0 0 0 80

0 1 1 0 0 0 98

IV Sem. CSE

Page No. - 80 -

The microprocessor stores the display information in a RAM. Each time a display has to

fetches all bytes one by one from RAM and outputs

corresponding display codes serially that is bit by bit to display. Hexadecimal code is

stores in the RAM. The code conversion from hexa to 7 segment is done just before the

nt display is used as a numerical indicator on many types of test equipment.

It is an assembly of light emitting diodeswhich can be powered individually. There are

all the LEDs are joined together and the

display, the anodes of all the LEDs are joined together and the

Since the outputs of shift registers are connected to cathode sides of displays, low input

must be given to segments for making them glow and high inputs for making them

blank. Each display has 8 segments (a, b, c, d, e, f, g, h) as shown. For displaying any

character the corresponding segment must be given low inputs.

common anode display since all anodes are joined together and go to the positive

supply. The cathodes are connected individually to zero volts. Resistors must be placed

in series with each diode to limit the current through each diode to a safe value. The d.p

The following table shows how to form characters: '0' means that pin is connected to

Hex. value

C0

F9

A4

B0

99

92

82

F8

80

98

15CSL48-MP-LAB

Dept. of CSE, CIT, Gubbi- 572 216

F 1 0

I 1 1

R 1 0

E 1 0

2. Stepper Motor:

A stepper motor is a widely used device that translates electrical pulses into mechanical

movement. In applications such as disk drives, dot matrix

stepper motor is used for Position control.

Every stepper motor has a permanent magnet rotor (also called the shaft.) surrounded

by a stator. The most common stepper motors have four common stator windings that

are pairs with a center-taped common. This type of stepper motor is commonly referred

to as a four-phase stepper motor.

A Stepper motor is stepped from one position to the next by changing the currents

through the fields in the motor. Common step sizes for stepper moto

degrees to 30 degrees.

82C55A is used to provide the drive signals that are used to rotate the armature of the

motor in either the right-hand or left

The power circuit for one winding of the stepper motor is as shown

connected to the port A (PA0

lower bits of port A (PA1, PA2

turned ON/OFF one at a time successively.

572 216 Page No.

0 0 1 1 1 0 8e

1 1 1 0 0 1 F9

0 0 1 0 0 0 88

0 0 0 1 1 0 86

A stepper motor is a widely used device that translates electrical pulses into mechanical

movement. In applications such as disk drives, dot matrix printers, and robotics, the

stepper motor is used for Position control.

Every stepper motor has a permanent magnet rotor (also called the shaft.) surrounded

by a stator. The most common stepper motors have four common stator windings that

taped common. This type of stepper motor is commonly referred

phase stepper motor.

A Stepper motor is stepped from one position to the next by changing the currents

through the fields in the motor. Common step sizes for stepper motors range from 0.9

82C55A is used to provide the drive signals that are used to rotate the armature of the

hand or left-hand direction.

The power circuit for one winding of the stepper motor is as shown in figure above. It is

A0) of 82C55A. Similar circuits are connected to the remaining

A2, PA3). One winding is energized at a time. The coils are

turned ON/OFF one at a time successively.

IV Sem. CSE

Page No. - 81 -

8e

F9

88

86

A stepper motor is a widely used device that translates electrical pulses into mechanical

printers, and robotics, the

Every stepper motor has a permanent magnet rotor (also called the shaft.) surrounded

by a stator. The most common stepper motors have four common stator windings that

taped common. This type of stepper motor is commonly referred

A Stepper motor is stepped from one position to the next by changing the currents

rs range from 0.9

82C55A is used to provide the drive signals that are used to rotate the armature of the

in figure above. It is

) of 82C55A. Similar circuits are connected to the remaining

). One winding is energized at a time. The coils are

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 82 -

The stepper motor showing full-step operation is shown below.

(A) 45-degrees. (B) 135-degrees (C) 225-degrees (D) 315-degrees.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 83 -

3. DAC INTERFACE

The pin details of DAC 0800 is given below and schematic diagram of the dual DAC

interface is given below.

The port A and port B of 82C55A peripheral are used as output ports. The digital inputs

to the DACs are porvided through these ports. The analog outputs of the DACs are

connected to the inverting inputs of OP-amps 741 which acts as current to voltage

converters. The outputs from the OP-amps are connected to points marked X out and Y

out at which the waveforms are observed on a CRO. The power supplies of +12 and -12

are regulated for this interface.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 84 -

ARM LPC 2148 FEATURES:

• 16-bit/32-bit ARM7TDMI-S Microcontroller.

• 40 kB of on-chip static RAM and 512 kB of on-chip flash memory.

• In-System Programming/In-Application Programming (ISP/IAP) via on-chip boot

loader software.

• Embedded ICE RT and Embedded Trace interfaces offer real-time debugging with

the on-chip Real Monitor software and high-speed tracing of instruction execution.

• USB 2.0 Full-speed compliant device controller with 2 kB of endpoint RAM.

• Two 10-bit ADCs provide a total of 14 analog inputs

• Single 10-bit DAC provides variable analog output

• Two 32-bit timers/external event counters (with four capture and four compare

channels each)

• PWM unit (six outputs)

• Watchdog Timer.

• Low power Real-Time Clock (RTC) with independent power and 32 kHz clock input.

• Multiple serial interfaces including two UARTs, two Fast I²C-bus (400 kbit/s), SPI and

SSP with buffering and variable data length capabilities.

• Vectored Interrupt Controller (VIC) with configurable priorities and vector

addresses.

• 60 MHz maximum CPU clock available from programmable on-chip PLL with settling

time of 100 us.

• On-chip integrated oscillator operates with an external crystal from 1 MHz to 25

MHz

• Power saving modes include Idle and Power-down.

• Individual enable/disable of peripheral functions as well as peripheral clock scaling

for additional power optimization.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 85 -

LPC 2148 TECHNICAL SPECIFICATIONS:

• Microcontroller: LPC2148 with 512K on chip memory

• Crystal for LPC2148: 12Mhz

• Crystal for RTC: 32.768KHz

• 6 – 10pin Berg headers for external interfacing(GPIOs)

• No separate programmer required (Program with Flash Magic using on-chip boot

loader)

• No Separate power adapter required (USB port as power source)

• 20pin(2X10) FRC JTAG connector for Programming and debugging

• 16 Pin Berg Header for LCD Interfacing

• Two RS-232 Interfaces (UART0 and UART1)

• Real-Time Clock with Battery Holder

• 1 Analog Potentiometer connected to ADC

• 4 USER Switches

• 8 USER LEDs

• Reset and Boot loader Switches

• On Board Buzzer Interface

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 86 -

HOW TO USE KEIL µVISION4
For ARM7 (LPC2148) Step By Step

Keil is on the tool which is widely used in Industry, KEIL has tools for ARM, Cortex-M,

Cortex-R, 8051, C166, and 251 processor families. In this article we are going to discuss

KEIL tools for ARM. The development tools of for ARM include following...

1. µvision IDE v4

2. Compiler for ARM (armcc)

3. MicroLib (C library)

4. Assembler for ARM (armasm)

5. Linker For ARM (armLink)

Step1: Click for KEIL µVISION4 Icon .

Which appearing after Installing Keil KEIL µVISION4.

This will open uvison IDE.

Step2: Click on Project Menu, Then New µVison Project.

Step3: Create New Project Folder named as “Keil Test”.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 87 -

Step 4: Select Target Device

Step 5: Then select specific chip LPC2148.

Step 6: Then select specific chip i.e. LPC2148.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 88 -

Step 7: Then you will see following window

Step 8: Now you see Startup.s is already added which is necessary for running code for

Keil.

Note: Code wills Not Run without Startup.s

Startup.s is available in C:\Keil\ARM\Startup\Philips.

Step 9: Now Click on File Menu and Click on New.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 89 -

Step 10: Write Code for Blink LED in C OR ASM and FileName.c/ASM Save.

Note: Don’t forget to save .c/ASM Extension.

Step 11: Now you Window in C Syntax.

Step 12: Now you

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 90 -

add LED.c file by adding Source Group 1 Add files to Group ‘Source Group 1’.

Step 13: Add LED.C file.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 91 -

Step 14: Now Click on Options for Target ‘Target 1’.

Step 15: Go to Options for Target ‘Target 1’. Click on Check Box Create HEX File.

Step 16: Then go to Linker. Click on Use Memory Layout for Target Dialog.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 92 -

Step 17: Then Click on Rebuild All Target Files

Step 17: Now you see 0 Error(s), 0 Warning (s). Then Hex File will create in Specific

Folder. Now to download it for you target hardware.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 93 -

Viva Questions and Answers

1. What is a Microprocessor?

ANS: Microprocessor is a program-controlled device, which fetches the instructions from

memory, decodes and executes the instructions. Most Micro Processor are single- chip

devices.

2. What is the difference between 8086 and 8088?

ANS: The BIU in 8088 is 8-bit data bus & 16- bit in 8086.Instruction queue is 4 byte

long in 8088and 6 byte in 8086.

3. what are the functional units in 8086?

ANS: 8086 has two independent functional units because of that the processor speed is

more. The Bus interface unit and Exectuion unit are the two functional units.

4. What are the flags in 8086?

ANS:In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace

flag, Interrupt flag, Direction flag, and Sign flag.

5. What is the Maximum clock frequency in 8086?

ANS: 5 Mhz is the Maximum clock frequency in 8086.

6. What are the various segment registers in 8086?

ANS: Code, Data, Stack, Extra Segment registers in 8086.

7. Logic calculations are done in which type of registers?

ANS: Accumulator is the register in which Arithmetic and Logic calculations are done.

8. How 8086 is faster than 8085?

ANS: Because of pipelining concept. 8086 BIU fetches the next instruction when EU

busy in executing the anoter instruction.

9. What does EU do?

ANS:Execution Unit receives program instruction codes and data from BIU, executes

these instructions and store the result in general registers.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 94 -

10. Which Segment is used to store interrupt and subroutine return address

registers?

ANS: Stack Segment in segment register is used to store interrupt and subroutine return

address registers.

11. What does microprocessor speed depend on?

ANS:The processing speed depends on DATA BUS WIDTH.

12. What is the size of data bus and address bus in 8086?

ANS: 8086 has 16-bit data bus and 20- bit address bus.

13. What is the maximun memory addressing capability of 8086?

ANS: The maximum memory capability of 8086 is 1MB.

14. What is flag?

ANS:Flag is a flip-flop used to store the information about the status of a processor and

the status of the instruction executed most recently.

15. Which Flags can be set or reset by the programmer and also used to control the

operation of the processor?

ANS: Trace Flag, Interrupt Flag, Direction Flag.

16. In how many modes 8086 can be opertaed and how?

ANS: 8086 can be opertaed in 2 modes. They are Minimum mode if MN/MX pin is

active high and Maximum mode if MN/MX pin is ground.

17. Whatis the difference between min mode and max mode of 8086?

ANS: Minimum mode operation is the least expensive way to operate the 8086

microprocessor because all the control signals for the memory and I/O are generated by

the micro processor. In Maximum mode some of the control signals must be externally

generatred. This requires the addition of an external bus controller. It used only when the

system contains external coprocessors such as 8087 arithmetic coprocessor.

18. Which bus controller used in maximum mode of 8086?

ANS: 8288 bus controller is used to provide the signals eliminated from the 8086 by the

maximum mode operation.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 95 -

19. What is stack?

ANS:Stack is a portion of RAM used for saving the content of Program Counter and

general purpose registers.

20. Which Stack is used in 8086?

ANS:FIFO (First In First Out) stack is used in 8086.In this type of Stack the first stored

information is retrieved first.

21. What is the position of the Stack Pointer after the PUSH instruction?

ANS:The address line is 02 less than the earlier value.

22. What is the position of the Stack Pointer after the POP instruction?

ANS:The address line is 02 greater than the earlier value.

23. What is interrupt?

ANS: Interrupt is a signal send by external device to the processor so as to request the

processor to perform a particular work.

 24. What are the various interrupts in 8086?

ANS:Maskable interrupts, Non-Maskable interrupts.

25. What is meant by Maskable interrupts?

ANS: An interrupt that can be turned off by the programmer is known as Maskable

interrupt.

26. What is Non-Maskable interrupts?

ANS: An interrupt which can be never be turned off (ie.disabled) is known as Non-

Maskable interrupt.

27. Which interrupts are generally used for critical events?

ANS:Non-Maskable interrupts are used in critical events. Such as Power failure,

Emergency, Shut off etc.,

28. Give example for Non-Maskable interrupts?

ANS:Trap is known as Non-Maskable interrupts, which is used in emergency condition.

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 96 -

29. Give examples for Maskable interrupts?

ANS: RST 7.5, RST6.5, RST5.5 are Maskable interrupts. When RST5.5 interrupt is

received the processor saves the contents of the PC register into stack and branches to

2Ch (hexadecimal) address.

When RST6.5 interrupt is received the processor saves the contents of the PC register

into stack and branches to 34h (hexadecimal) address.

When RST7.5 interrupt is received the processor saves the contents of the PC register

into stack and branches to 3Ch (hexadecimal) address.

30. What is SIM and RIM instructions?

ANS:SIM is Set Interrupt Mask. Used to mask the hardware interrupts. RIM is Read

Interrupt Mask. Used to check whether the interrupt is Masked or not.

31.What is macro?

ANS: Macro is a set of instructions that perform a task and all the isntructions defined in

it is inserted in the program at the point of usage.

32. What is the difference between Macro and Procedure?

ANS: A procedure is accessed via a CALL instruction and a macro will inserted in the

program at the point of execution.

33. What is meant by LATCH?

ANS:Latch is a D- type flip-flop used as a temporary storage device controlled by a

timing signal, which can store 0 or 1. The primary function of a Latch is data storage. It is

used in output devices such as LED, to hold the data for display

34. What is a compiler?

ANS: Compiler is used to translate the high-level language program into machine code

at a time. It doesn.t require special instruction to store in a memory, it stores

automatically. The Execution time is less compared to Interpreter.

35. What is the disadvantage of microprocessor?

ANS:It has limitations on the size of data. Most Microprocessor does not support

floating-point operations.

36. What is the 82C55Adevice?

15CSL48-MP-LAB IV Sem. CSE

Dept. of CSE, CIT, Gubbi- 572 216 Page No. - 97 -

ANS:The 8255A/82C55A interfaces peripheral I/O devices to the microcomputer system

bus. It is programmable by the system software. It has a 3-state bi-directional 8-bit buffer

which interfaces the 8255A/82C55A to the system data bus.

37. What kind of input/output interface dose a PPI implement?

ANS: It provides a parallel interface, which includes features such as single-bit, 4-bit, and

byte-wide input and output ports; level-sensitive inputs; latched outputs; strobed inputs or

outputs; and strobed bidirectional input/outputs.

38. How many I/O lines are available on the 82C55A?

ANS: 82C55A has a total of 24 I/O lines.

39. Describes the mode 0, mode 1, and mode 2 operations of the 82C55A?

ANS: MODE 0: Simple I/O mode. In this mode, any of the ports A, B, and C can be

programmed as input or output. In this mode, all the bits are out or in.

MODE 1: Ports A and B can be used as input or output ports with handshaking

capabilities. Handshaking signals are provided by the bits of port C.

MODE 2: Port A can be used as a bidirectional I/O port with handshaking capabilities

whose signals are provided by port C. Port B can be used either in simple I/O mode or

handshaking mode 1.

40. What is the mode and I/O configuration for ports A, B, and C of an 82C55A

after its control register is loaded with 82H?

ANS: If control register is loaded with 82H, then the port B is configured as an input

port, port A and port C are configured as output ports and in mode 0.

